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Abstract. Numerical solutions of the perturbed Sine-Gordon equation in two space variables, arising from a 
Josephson junction are presented. The method proposed arises from a two-step, one parameter method for the 
numerical solution of second-order ordinary differential equations. Though implicit in nature, the method is applied 
explicitly. Global extrapolation in both space and time is used to improve the accuracy. The method is analysed with 
respect to stability criteria and numerical dispersion. Numerical results are obtained for various cases involving 
line and ring solitons. 

1. Introduction 

Over the last few years, it has become increasingly apparent that many physical phenomena 
in one space dimension can be described by a soliton model. Most of these models are based 
on simple integrable models such as the Sine-Gordon (SG) model, Korteweg-de Vries (KdV) 
equations and the nonlinear Schrodinger equation (NLS) [1, 2]. The soliton structures in 
these models are believed to be related to the integrability of the models themselves and the 
existence of an infinite number of conserved quantities is attributed to a remarkable stability 
of interacting solitons. 

In recent years, some attention has also been paid to models which possess soliton-like 
structures in higher dimensions. In particular, the Josephson junction model [3] which consists 
of  two layers of superconducting material separated by an isolating barrier. This model is 
found to have many applications in electronics and can be described by the two dimensional 
undamped Sine-Gordon equation. Moreover, it is found to possess soliton-like solutions [4]. 

Analytical solutions to the unperturbed Sine-Gordon equation with zero damping in higher 
dimensions have been obtained by Hirota [5], Lamb's method [6], Bhcklund transformation 
[7, 8] and Painlev6 transcendents [9], while approximate solutions, chronologically, include 
those obtained by Christiansen and Lomdahl [4] and Argyris et al. [10]. The method proposed 
by Christiansen and Lomdahl was based on a generalized leapfrog method; and the develop- 
ment of the method by Argyris et al. was based on finite element techniques. Both methods 
have been applied successfully, for example, for the undamped Sine-Gordon equation in two 
space variables for a number of  initial conditions, although in some particular cases, the finite 
element method appears to perform slightly better than the leapfrog method but at the cost of 
approximatively 25 times higher than the leapfrog method. 

The presence of dissipative effects or other small perturbations can never be avoided in 
more realistic physical systems and lead also to equations too complicated to be integrated 
exactly. Thus, one may ask the basic question on how the soliton properties of the unperturbed 
Sine-Gordon equation in two space variables would be modified, if a perturbed term is added. 



348 K. Djidjeli et al. 

The perturbation considered here is a dissipative term and corresponds to a physically relevant 
effect in real Josephson junctions [ 11 ]. 

In this paper, the effect of the dissipative term in the solution of the Sine-Gordon equation 
in two space variables will be studied numerically. The method proposed is derived in Section 
3 in which it is shown that the leapfrog method of Christiansen and Lomdahl [4] is in effect a 
special case (or a sub-scheme) of the proposed numerical method. The method is not expensive 
to implement, as the solution vector is obtained explicitly. In Section 4, the method is analysed 
with respect to stability criteria and numerical dispersion (the amplitude and phase errors of 
the method are analysed using a localized Fourier analysis). In Section 5, global extrapolation 
in both space and time is used to improve the accuracy of the method. 

Numerical results obtained using this method for a sequence of initial conditions are 
reported in Section 6. The initial field distributions are chosen as kink profiles from one space 
dimension across lines or closed curves lying or moving in the xy-plane. Such waves will be 
denoted line and ring solitons respectively. In sub-section 6.2, superposition and perturbed 
line solitons as well as a moving-line soliton in inhomogeneous medium are investigated. 
Finally, the pulson behaviour of ring solitons in the case of a circular ring and the collision 
between non-concentric expanding ring solitons are also investigated. 

The method developed is first tested on an equation for which the exact solution is known 
and then applied to an equation for which analytical results are not available at present. 

2. The Associated System of Ordinary Differential Equations 

Numerical solutions are sought to a Josephson junction which can be described by a damped 
Sine-Gordon equation in two space variables [11-12] given by 

O2u O2u Oau Ou = F(x,y)  sinu, /3 >1 O, (2.1) 
Ox--- ~ + Oy----- ~ Ot 2 f l -~ 

in the region [2 = {(x, y), - a  < x < a, - b  < y < b} for t > O, where B is the dissipative 
term. The initial conditions are given at time t = 0 and are of the forms 

Ou 
u(x,y,O) = f (x ,y )  and -~ (x , y ,O)=g(x , y )  

- a ~ < x ~ a ,  -b<~y~<b .  (2.2) 

The boundary conditions associated with (2.1) will be assumed to have the forms 

Ou 
O--x=P(x'y't) for x = - a ,  and x = a ,  - b < y < b ,  t > 0 ,  (2.3) 

Ou 
Oy q(x,y,t) for y -b ,  and y b, - a < x < a ,  t > 0 ,  (2.4) 

where p(x, y, t) and q(x, y, t) are normal gradients along the boundary of the region [2. The 
function F(x, y) may be interpreted as a Josephson current density and f (x ,  y) and g(x, y) 
represent wave modes or kinks and velocity, respectively. 

It may be noted that for/3 = 0, equation (2.1) reduces to the undamped Sine-Gordon 
equation in two space variables [4--10]. Some exact solutions of the undamped Sine-Gordon 
equation: 02u/cgx 2 + 0 2 u / O y  2 - 0 2 u / O t  2 = sin u have been obtained (see [5-9]) but not to 
the damped Sine-Gordon equation (2.1), as far as the authors are aware. 
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The solution of (2.1) is sought in some region R = f~ x It > 0]. The space intervals 
- a  ~< x ~< a and - b  ~< y ~< b are divided into N + 1 subintervals each of width hi and h2, 
respectively, so that (N + 1)hi = 2a and (N + 1)h2 = 2b, and the independent variable 
t will be discretized in steps of length I. At each time level t = tn = nl (n = 0, 1, 2 , . . . )  
the rectangle f~ together with its boundary 0f~ have been superimposed by a square mesh of 
(N  + 2) 2 points. 

The solution u(x, y, t) of (2.1) is sought at each point (-a + khl, -b  + mh2, nl), where 
k, m = 0, 1, 2 , . . . ,  N, N + 1 and n = 0, 1, 2, . . . .  The solution u(-a + khl, -b  + mh2, nl) of 
(2.1) will be denoted by uS, m, while the theoretical solution of an approximating difference 
scheme will be denoted by Unk,m with 

' /~ . n . u j n  

U~r+ 1,1, • 0 ,N+I,  U n v , n  U n . V~r+l,O, U,~o,1 ' V l , l , .  , n . . . ,  ~-- ( 0,0, 1,0," ", "" 
V n ", n T 1,N+I,  "" U~r+I ,N+I )  ' (2.5) 

where T denotes transpose. Replacing the space derivatives in (2.1) by central difference 
approximants and applying the differential equation (2.1) to each of the discrete points ( - a  + 
k h l , - b +  mh2, nl) ( k , m  = 0, 1 , 2 , . . . , N  + 1 a n d n  = 0, 1 ,2 , . . . )  at time level n, Eq. (2.1) 
is transformed into the second-order initial-value problem 

dzU(t) 2 dU(t)  AU(t)  + G(U(t)) - b(t) = 0, t > 0, 
dt---g - + r  

dU(0) 
U(0) = f, d ~  - g' (2.6) 

where A = h12B + h22C is a matrix of order (N + 2) 2 with B and C given by 

B = 

B1 0 ) 
, ° ,  

B1 
, , ,  

0 B1 

, with B1 = 

- 2  2 
1 - 2  1 

1 - 2  1 
2 - 2  

(2.7) 

and 

- 2 I  21 ) 
I - 2 I  I 

C = , (2.8) 

I - 2 I  I 
2I  - 2 I  

where I is the identity matrix of order N + 2. The matrix B is block diagonal with tridiagonal 
blocks and the matrix C is block tridiagonal with diagonal blocks. The vector G(U) is of order 
(N  + 2) 2 and is given by 

G(U(t))  = (F0,0 sin Uo,o(t), Fl,o sin U 1 , 0 ( t ) ,  • • . ,  F N + I , 0  sin UN+I,O(t); 
F0,1 sin Uo, 1 ( t ) ,  Fl,1 sin U1,1 (]~), . . . , FN+l,1 sin UN+I ,  1 ( t ) ,  

. . . . . . . . .  ; FO,N+I sin UO,N+I (t), F1,N+ 1 sin U1,N+ 1 ( t ) ,  

. . . ,  FN+I,~r+I sin UN+I,N+I (t)) T, (2.9) 
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where Fk,m = F ( - a  + k h l , - b  + mh2) for k, m 
bl (t) + b2 (t) is a vector of boundary conditions with bl (t) and b2 (t) given by 

bl( t )  

= 0, 1 , 2 , . . . , N , N  + 1, and h(t) = 

2 
= -~1 ( - p ( - a , - b , t ) , O , . . . , O , p ( a , - b , t ) ; - p ( - a , - b +  h2,t) ,  

0 , . . . ,  0, p(a, - b  + h2, t); . . . . . . . . .  ;p(-a,  b, t), 

O,... ,O,p(a,b,t)) T, 

and 

bE(t) = 
2( 
h2 - q ( - a , - b , t ) , - q ( - a  + h l , - b , t ) , . . .  - q (a , -b , t ) ;  

0, . . . . . . . . .  ,0; q(-a,  b, t), q( -a  -4- hi, b, t ) , . . . ,  q(a, b, t)) T, 

respectively. 

(2.10) 

(2.11) 

3. A Numer ica l  Method  

3.1. DEVELOPMENT 

Equation (2.6) can be transformed into a system of two equations, given by 

dU(t)  
d----~- f l U ( t ) + V ( t ) ,  t > O ,  U ( O ) = f ,  

and 

(3.1) 

The numerical methods are based on the replacement of dU(t)/dt, dV(t) /dt  in (3.1) and (3.2) 
by the first-order forward difference approximants 

dU(t)  _ U(t  + l) - U(t) 
dt l 

+ O(1) as l --+ 0, (3.3) 

dV(t)  V(t  + l) - V(t) 
m 

dt l 
+ O(1) as l ~ 0, (3.4) 

where l is an increment in time (the time step). The solution of a numerical method at the 
point tn will be denoted by U'* and V'* (n = 0, 1, 2 , . . . ) .  

Evaluating U on the right-hand side of (3.1) and (3.2) at t = tn+l and t = tn respectively 
and V in (3.1) at linear combination o f t  = tn and tn+l, and then replacing dU/d t  and dV/d t  
in (3.1) and (3.2) by (3.3) and (3.4) gives the implicit formula 

U n-l-1 = U n - IflU n+l 4- ~ l V  n + (1 - a ) lV n+l, 

V n+l V~ + l (AUn + bn - G(U~)) ,  

(3.5) 

(3.6) 

dV(t) = AU(t)  + b ( t ) -  G(U(t)) ,  t > 0, V(0) = g. (3.2) 
dt 
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which, provided 1 + 13 ~ O, may be rearranged to give a family of numerical methods 

Un+ 1 -- 1 + 1/~ (Un + aIVn + (1 - a ) l vn+ l ) ,  (3.7) 

V n+l = V n q-  l ( A U  n + b n - G(Un))  , (3.8) 

where a is some real parameter. Clearly, method {(3.7), (3.8)} can be used explicitly by solving 
first (3.8) and then (3.7), though its derivation (formula (3.5)) classifies it to be implicit. 

It is worth noting that {(3.8), (3.7)} is a sequential algorithm for a ¢ 1 but, if ~ = 1, V ~+1 
and U '~+ 1 can be found simultaneously (i.e. in parallel) using a computer with two processors. 
Moreover, it can be seen also that by substituting V n+l given by (3.8) into (3.7), the values 
of U n+ 1 and V n+ l can be found simultaneously, that is, 

{ W n = AU n, 

u n + l =  f@+13 (U~ + l V ~  + ( 1 -  cQI2(W n + bn - G(Un)))  , 

V n+l = V n Jr- l ( W  n q- b n - G(Un)) .  

(3.9) 

(3.10) 

(3.11) 

The algorithm (3.9)-(3.11) is well suited to parallel computation. The dominant calcula- 
tion is the matrix-vector multiplication AU n (the number of multiplications/divisions and 
additions/subtractions required to calculate the matrix-vector multiplication AU ~ are 2 (N + 
2) (4N + 7) and (N  + 2)(6N + 7) respectively) which can be done in such a way that the 
components of AU n can be calculated simultaneously using different processors. The calcu- 
lated matrix-vector AU ~ using different processors can then be used in equations (3.10) and 
(3.11) to find U r~+l and V n+l simultaneously and thus the time needed to solve the PDE will 
be reduced significantly. 

3.2. LEAPFROG SCHEME 

Substituting equation (3.8) into (3.7), leads to 

un+ l  _ 1 
1 + l /~  [Un +IV'~ + ( 1 -  a)12{AU '~ + bn - G(U'~)}]. 

Writing, now, equation (3.12) at n := n + 1, leads to 

Un+2 _ 1 1 + 13 [Un+l + lVn+l + (1-tx)12{AUn+l + bn+l - G(U~+I)}]" 

Subtracting equation (3.12) from (3.13) gives 

Un+2 1 1 + lfl {[(2 + I13)I + (1 - ct)12A]U a+l - (I  - cd2A)U n 

+12[(1 -- c~)b n+l + ab  n] -12[(1 - c~)G(U n+l) + c~G(Un)]} = O. 

(3.12) 

(3.13) 

(3.14) 
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By replacing c~ = 0,/3 = 0 and n := n - 1 in (3.14), equation (3.14) becomes 

U n+l = (2I + / 2 A ) U  n - U n-1 + /2hn  - 12G(Un). (3.15) 

It may be noted that method (3.15) is the leapfrog scheme used by Christiansen and Lomdahl 
[4]. In effect this is a sub-scheme (or special case) of the proposed general numerical method, 
which is shown in the next section, to have a wider range of application because of the 
flexibility in choosing the values of c~ and/3. 

4. Analysis of the Method 

4.1. LOCAL TRUNCATION ERROR 

The local truncation error of (3.14) at the point u(x, y, t) is given by 

Ot 3 ~¢4-0- ~ + (1 - a) + l Ox2Ot ] 

1 2 04u 1 2 04u 
q--~ h l ~x4 q- -£~ hz oy 4 

- ( 1  - ~)F(x ,  y) (s inu(x ,  y, t + l) - sin u(x, y, t)). (4.1) 

Differentiating equation (2.1) with respect to t and using the approximation 
s inu (x , y , t  + l) = s inu(x ,y , t )  + [u(x,y , t  + l) - u(x,y , t )]  ds inu/du,  equation (4.1) 
can be written as 

{ 03U 0~) 02U'~ 

1 hZO4U 1 04U 
+ -~ 1 ~  + -~  h 2 -~zy4 + " "  • 

b h Replacing, now, h2 = a 1 in equation (4.2), leads to 

(4.2) 

( 03U O~) 02U'~ 

__1 b 2 (04  
h~ 

q-12 \ 0 x  4 a 20y  4 J 
+ . . . .  (4.3) 

From this last equation, it is easy to see that the method {(3.7), (3.8)} is second-order in time 
when o~03u/0t 3 + (12+ a)/302u/Ot2 = 0 and first-order otherwise. 

4.2. STABILITY ANALYSIS AND DISPERSION ERROR 

In an attempt to gain some insight into the stability of the method {(3.7), (3.8)}, linear 
stability theory is used for analysing the method. It is known that in the early stages an 
instability develops in a very small region. Therefore, if the solution is slowly varying, an 
instability may be predicted by means of a stability analysis of a localized version of the 
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difference scheme. That is, in the case of scheme (3.14), of  the equation 

u n + 2  __ 1( 
1 + 113 [(2 + 113)I + (1 - c012A]U ~+1 - (I - al2A)U n 

+12[(1 - o 0 b  n+l d- a b  n] -12G(v)},  (4.4) 

where v = max0<k,m<N+l I U ° m l  • In deriving Eq. (4.4), the vector U n in G(Un) ,  given by 
equation (2.9) is frozen (temporarily). However, although the application of  the linear stability 
analysis to nonlinear equations cannot be rigorously justified it is found to be effective in 
practice (see for example, Greig and Morris [13] and Twizell et al. [14]). 

Using Eq. (4.4), it follows that a perturbation Z ~ = U n - ~n ,  where ~n  is the computed 
solution, satisfies the equation 

This may be written as 

(4.5) 

E n+2 = W E  ~+1, (4.6) 

o r  

E n+l = W E  n, (4.7) 

where E n+l = [ ( Z  n + I ) T ,  (zn)T]T and W is the amplification matrix given by 

(2 + 113)I + (1 - a)12A (I - al2A ) 
W = 1 + 113 1 + 113 . (4.8) 

I 0 

The global error in (4.7) will not grow as n --+ oo if the eigenvalues of the amplification 
matrix W are less than unity in modulus. It is easy to see that the eigenvalues of W are given 
by the solution of  the equation 

A 2 - -  7"1 ,~ -q'- 7-2 = 0 ,  (4.9) 

where 7"1 = (2 + 113 + (1 - a)12~A)/(1 + I/3) and 7"2 = (1 - aI2AA)/(1 + 113). Using the 
Routh-Hurwitz criterion (see, for instance, Lambert  [15]), the roots of  (4.9) lie inside the unit 
circle if 

1 + 7-1 q- 72 ) 0 ,  1 - 7-2 > 0, a n d  1 - 7-1 -1- 72 ) 0,  (4.10) 

Replacing 7-1 and 72 by their values in (4.10), leads to 

4 + 2113 + (1 -- 2a)/2,~A > 0 

--12/~A > 0 
t3 q- al~A > 0 

(4.10a) 

(4.lOb) 

(4.10c) 
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where AA is an eigenvalue of the matrix A. It can be shown that the (N + 2) 2 eigenvalues of 
A are real and negative and are given by 

kTr mTr ) 
Ak,m = - 4  hi -2sin 2 2 ( N + 1 )  + h~-2 s i n 2 2 ( N + l )  ' 

k , m  = 0, 1 , 2 , . . . , N +  1. (4.11) 

From equation (4.10a), it follows that for a >/ l ,  Eq. (4.10a) is true for all I and for a < ½, 
Eq. (4.10a) can be written as 

(1 -- 2a)l  2 ( h i 2  sin2 
4 4+-2--~ 

kTr 

2(N + 1) 
m~r ) 

+ h22 sin2 2(N + 1) < 1. (4.12) 

The maximum value of the left-hand side of (4.12) occurs when sin 2 ~ k ~ r  = sin 2 ~ m ~  = 
1. Hence, 

-- 2cQl2(hl  2 + h -2) < 1, (4.13) 
4(14 + 21/3 

that is, 

/3 + V//3 2 + 16(1 - 2a)tr 
l~< 

4(1 - 2a)tr 
(4.14) 

where tr = h i  2 + h22. 
Turning next to equation (4.10b), is is easy to see that equation (4.10b) is true for all 

• ~ a  < 0. For the c a s e  ,~a  = 0 ,  the stability interval may be found by solving equation (4.9) 
directly. Substituting ,~a  = 0 into Eq. (4.9), leads to 

A2 2 + I /3 .  1 
1 7 T ~  A + 1 + l-----fl -- 0. (4.15) 

The solutions of this equation are given by 

1 
A1 = 1, ,,~2 -- , - - - -~ .  (4.16) 

ptl + 

From equation (4.16), it may be concluded that both solutions are less than or equal to unity 
for/3/> 0 and hence the method is stable. 

Finally, turning to equation (4.10c), it can be seen that for c~ < 0, Eq. (4.10c) is true for all 
• ~A < 0 and for a > 0, Eq. (4.10c) can be written as 

B 
' -  + AA > 0. (4.17) 
al 

For/3 = 0, (4.17) is not satisfied since/~A ~< 0 and hence the method is unstable. For/3 > 0, 
it may be shown using (4.11) that 

/3 
l ~< 4c~----~" (4.18) 

Table 1 gives the range of values of c~ for which the method {(3.7), (3.8)} is stable. 
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Table 1. Stability of the method (3.7)-(3.8) 

,~.<o o<,~<½ ,~>~ 

Stable for l ~ / 3 +  ~f12+ 16(1 -2a)cr 
4(1 - 2o~)tr 

( / 3+  ~//32 + 16(1-2a)tr /3 ) Stable for / ~ /3 Stable for l ~< min ~ ~ ' 4cra 4c~''a 

and/3>0 and/3>0 
Unstable for/3 = 0 Unstable for/3 = 0 

The physical model of the Sine-Gordon equation represents situations requiring large-scale 
time calculations. Thus, for wave simulations, the numerical method proposed should at least 
possess two properties. The first is that the method should represent faithfully amplitudes of 
the solution for many time steps and the second is that, since the positions of the wave fronts 
are as important as the amplitude of these waves, the proposed method should be capable 
of predicting such wave fronts with minimal error. Therefore, the phase error (dispersion) of 
the method must be small, over a long time calculation, since large phase errors can produce 
solutions that are totally out of phase with the (unknown) exact solution. That is, the method 
can produce solutions with exact amplitudes but with large errors in phase; a meaningless 
solution would then be obtained. In any discretization procedure only long waves can be 
approximated well. Thus, the amplitude and phase errors of the higher-frequency components 
are of little significance, and the main interest is in sufficiently small ( and 77. 

The numerical phase of a method is defined as 

P(~, ~7) = ta n-1 [Im{G(~, 0)}/Re{G(~, ~)}], (4.19) 

where ~, r/are the Fourier variables and G(~, ~7) is the amplification factor (see Shokin [16] 
and Turkel [17]). By applying the von Neumann method to equation (4.4), it can be shown 
that the eigenvalues of the amplification matrix of Eq. (4.4) are given by 

1 1 + 4c~12# 
{G(~'~7)}2 1+I/3( (2+lj3)-4(1-a)lz#)G(('~7)+ 1+l/3 -- 0, 

(4.20) 

where # = h i  2 sin 2 1( 2 + h2 2 sin2 10 with ( = klhl and r / =  k2h2; kl and k2 are the wave 
numbers. It may be noted that the eigenvalues G((, 77) of the equation (4.20) are the same as 
those given by equation (4.9); this may be seen just by substituting the eigenvalues .~a of A 
given by (4.11) into (4.9). 

The discriminant of equation (4.20) is given by 

A = f12 _ 16# - 8(1 + a)/3#l + 16(1 - a)2#2l  2. (4.21) 

For A < 0, the solutions of equation (4.20) are given by 

1 
G(¢, r/) -- 2(1 + /30  ((2 +1 /3 ) -4 (1  -a)12#+ilx/-Z-&), (4.22) 

where i = v/Z] -. Substituting Eq. (4.22) into Eq. (4.19) leads to 

( I x/Z--~ ) (4.23) P(~,r/) =-4-tan -1 ( 2 + / / 3 ) ~ ( 1  - c~)12# " 
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Define now PA((, rl) = lw(kl, k2) to be the analytic phase, where w(kl,  k2) is the disper- 
sion relation. Then it can be shown that the dispersion relation for the equation (2.1) with 
constant coefficients, given by 

02U 02tt 02tt 0U 
OZ----- 2 + Oy--- 5 Ot z 3-~- = F Sin V, (4.24) 

which can be reduced to 

02• 02t~ 02U 0U 
+ /3-==. = 0 (4.25) 

0z--- 7 0g---- 2 0t 2 

using the transformation u(x, y, t) := u(x, y, t) + ¼(x 2 + y2)F sin v, satisfies the equation 

w 2 + iflw - k 2 - k 2 = 0. (4.26) 

Solving this equation for w gives the dispersion relation 

l ( - i  3 4- V/-/32 + 4 ( k  2 + k2)) (4.27) 03~--- ~ 

Since Im{w} = - i 3 / 2 ,  equation (4.27) is dissipative for 3 > 0 and unstable for/3 < 0 in 
which case the solution will grow without bound as time tends to infinity. 

The numerical phase of (4.25) can also be shown to be given by (4.23). Thus, combining 
expressions (4.23) and (4.27) gives the following formula for the phase error (dispersion error) 

E4~(~, 7) : P(~, 7) - PA(~, ~7). (4.28) 

In the case/3 = 0, PA(¢, rl) = lw is real and so is Ee(¢, rl) which is given by 

(4.29) 

Equation (4.29) can also be used when 3 -+ 0. For E~((,  rl) > 0, the numerical solution is 
said to be lagging behind the analytical solution. 

Finally, it can be shown that the exact amplification factor of equation (4.25) is given by 
exp(- i lw) ,  where w is given by the dispersion relation (4.26). Thus, the amplitude error is 
then given by 

EA(~,rl) = [exp(-ilw)l 

= ~/(1+/3/ ) -1(1  +4c~/2#) - / e x p  ( - 1 / 3 / )  (4.30) 

5. Global Extrapolation in Space and Time 

The full global error at each grid-point at time T is given by the quantity E1 (see (4.3)) which 
has the form 

E1 = lel + (e2 + e3)h21 + R1, (5.1) 
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in which el = - ( a 0 3 u / 0 t  3 +(½ +c~)/302u/Ot 2, e2 = I~04U/0X 4 and e3 = b 2/12a 2 04u/Oy4 
are independent of / ,  hi and T and the quantity R1 is O(l r* + h~*) where r* > 1 and s* > 2 
as hi --+ 0 and I --+ 0. Denoting by G1 the grid characterized by hi,  h2 = hi and l, the 
computation is repeated on a grid G2 on which the space and time-steps are hi,  hi and ½1, 
respectively. The full global error at time T is now given by 

E2 = 2-11el + h21(e2 + e3) + R2, (5.2) 

where R2 = O(V* + h~* ). Suppose now that the computation is run a third time to time T on 
a grid G3 characterized by ½hi, ½hi and II. The full global error at time T is now given by 

E3 = 2-1/el  + 2-2h2(e2 + e3) + R3, (5.3) 

where R3 = O(/r* + h~* ). Considering the approximation W(T)  given by 

W(T)  = a l l h i  ~ULL hi z_ + o t2Uhl ,h l ,  ~ q"- (1 - a l  - oQ)Uhl,hl,l, (5.4) 
2 ' 2  2 ' 2 ' 2  

where the fine-to-coarse grid restriction operator ILL hi isolates the (N + 2) 2 elements of 
2 ' 2  

ULL2,2,2 hl /- corresponding to the (N + 2) 2 e l e m e n t s  of Uhl,hl, ~ and Uhhhl,l (U h2_~k, .~1.2 ,~, Uhl,hl, ~ 
and Uh~,hl,t denote the solutions at time T on grid G3, G2 and G1 and a l  and a2 are parameters) 
and the associated error 

Eu, = a lE3  + a2E2 + (1 - a l  - c~2)E1, (5.5) 

that is, 

( ,  ) ( 3 )  
E z o =  1 - ~ ( c q + a 2 )  l e l+  1 - ~ a l  h 2 ( e 2 + e 3 ) + R w ,  (5.6) 

it may be shown that the terms in el, e2 and e 3 vanish when 

4 2 
c ~ l = ~  and c ~ 2 = 3 .  (5.7) 

This global extrapolation in both space and time using grids G1, G2 and G3 has thus produced 
an approximation W(T)  which is O(l ~* + hSl *) provided the parameters cq and a2 take the 
values given in (5.7). 

For o~ = 0 and/3 = 0 respectively, it is easy to see from Eq. (5.1) that the method {(3.7), 
(3.8)} is second-order in both space and time, that is the full global error at each grid-point is 
given by 

El = 12e4 + (e2 + e3)h 2 + R. (5.8) 

Using the same technique as before, it may be shown the new approximation W(T)  is of order 
s* q, s* O(l  q* + h 1 ), where > 2 and > 2 provided al  = 4 and a2 = 0. 

6. Numerica l  Results  

To observe the behaviour of the numerical method {(3.7), (3.8)}, it and its global extrapolation 
in time and space were tested on the following problem 

02U 02U 02U OU 
O• 2 +--Oy 2 Ot 2 u~ = - -  /3-~: sinu,  --7 < x , y  < 7, t > 0, (6.1) 
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with initial conditions 

u(x,y ,  0) = 4tan -1 (exp(x + y ) ) ,  - 7  < x, y < 7, (6.2) 

OU 
= 

4exp(x + y) 

1 + exp(2x + 2y) '  
- 7  ~< x, y ~< 7 (6.3) 

and boundary conditions 

Ou 4 exp(x + y + t) 

Ox exp(2t) + exp(2x + 2y) 

fo rx  = - 7  and x = 7, - 7  < y < 7, t > 0 (6.4) 

Ou 4 exp(x + y + t) 

Oy exp(2t) + exp(2x + 2y) 

f o r y = - 7 a n d y = 7 ,  - 7 < x < 7 ,  t > 0  (6.5) 

The theoretical solution of  problem (6.1)-(6.5), in which the parameter/3 was given the 
value/3 = 0 is given by 

u(x,y ,  t) = 4tan -1 (exp(x + y - t ) ) .  (6.6) 

The solution was computed for x and y in the intervals - 7  ~< x, y ~< 7 and t > 0. The space 
and time steps, h and l, were given the values (i) h = 0.25 and l = 0.1 and (ii) h = 0.1 
and l = 0.05. The errors in the L2 and L ~  norms at time t = 1, 3, 5 and 7 using method 
((3.7), (3.8)} and its extrapolation are given in Table 2 for different values of a. It can be seen 
from these values that for/3 = 0 the method is stable when a ~< 0 and the condition (4.14) is 
satisfied, and unstable when a > 0. These results agree with the theory given in Section 4. 
Furthermore, it is easy to see that the extrapolation procedure involving both space and time 
produced noticeable reductions in error when a < 0 but at the cost of significantly increasing 
the computation time (one way to speed up calculations is to use the algorithm in parallel). 
By decreasing the space and the time steps (h = 0.1 and l = 0.05), it was found that the 
errors given by the method (3.7)-(3.8) and its extrapolation have been only slightly improved 
in comparison with those given for l = 0.25 and l = 0.1. 

The results for a = 0 in Table 2 correspond to those given by the leapfrog scheme used 
by Christiansen and Lomdahl [4]. It can be seen from this table that the errors given by the 
method (3.7)-(3.8) for a = 0 are similar to those given by this method for a = -0 .01.  The 
errors associated with the space-time extrapolation for a = 0 are not reflected however in 
Table 2 as desired. 

In Tables 3 and 4, the analytic phase and the modulus of the exact amplification factor 
together with the numerical phase (4.23) and the modulus of the numerical amplification 
factor G(~, 0) (4.22) are compared for the values of h = 0.25 and l = 0.1 for the case ~ = ~7 
only (mainly chosen to avoid displaying all other results corresponding to other values of  
and ~7 (~ ¢ ~) as they require too much space). It can be seen from Table 3 that the difference 
between the analytic and the numerical phases are small. The same thing can also be noticed 
for the amplitude (see Table 4). Moreover, as IG(~, ~)1 ~ l, the method (3.7)-(3.8) is nearly 
nondissipative. By choosing different values of the space and time steps, within the scheme's 
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Table 2. Error norms at t = 1, 3, 5 and 7 using the explicit method (3.7)-(3.8) with fl = 0, 
c~ = -0 .01 ,0 ,  0.2 and 0.5. 

Method (3.7)-(3.8) Space-time extrapolation 
a h l t L2 Loo CPU(s) L2 L ~  CPU(s) 

-0.01 0.25 0.1 1.0 0.7339 0.0354 0.40 0.0128 0.0013 4.38 
3.0 0.7849 0.0392 1.49 0.0339 0.0037 10.98 
5.0 0.4971 0.0464 1.65 0.0653 0.0058 17.39 
7.0 0.6817 0.0355 2.20 0.0932 0.0099 23.64 

0.0 0.25 0.1 1.0 0.7221 0.0350 0.70 0.2595 0.0276 6.05 
3.0 0.7877 0.0431 1.47 0.3186 0.0177 13.39 
5.0 0.5167 0.0404 2.12 0.2731 0.0205 20.91 
7.0 0.6531 0.0353 2.79 0.3237 0.0323 27.56 

0.2 0.25 0.1 1.0 0.5180 0.0258 0.70 0.0076 0.0016 6.05 
3.0 1.0138 0.0758 1.47 0.0316 0.0033 13.39 
5.0 1.7096 0.1752 2.12 0.1263 0.0198 20.91 
7.0 3.1385 0.3615 2.79 2.7906 0.4437 27.56 

0.5 0.25 0.1 1.0 0.4896 0.0350 0.70 0.0236 0.0039 6.05 
3.0 1.7834 0.1942 1.47 1.4776 0.4884 13.39 
5.0 7.8200 1.1874 2.12 12607.768 2936.244 20.91 
7.0 825.215 192.877 2.79 - - 27.56 

Table 3. Analytic and Numerical Phase for h = 
0.25, l = 0.1, a = -0.01 and fl = 0. 

Table 4. Amplitude Errors for h = 
0.25, 1 = 0.1, a = -0.01 and/3 = 0. 

Analytic Phase Numerical Phase ~ I exp ( - i l~ ) l  IG(~, n)l 

0.000 0.000 0.000 0.000 1.0000 1.0000 
0.100 0.057 0.057 0.100 1.0000 1.0000 
0.200 0.113 0.113 0.200 1.0000 0.9999 
0.300 0.170 0.169 0.300 1.0000 0.9999 
0.400 0.226 0.225 0.400 1.0000 0.9997 
0.500 0.283 0.281 0.500 1.0000 0.9996 
0.600 0.339 0.336 0.600 1.0000 0.9994 
0.700 0.396 0.391 0.700 1.0000 0.9992 
0.800 0.453 0.445 0.800 1.0000 0.9990 
0.900 0.509 0.498 0.900 1.0000 0.9988 
1.000 0.566 0.550 1.000 1.0000 0.9985 

s t ab i l i ty  r ange ,  the  m e t h o d  was  f o u n d  to o f fe r  a g o o d  phase  r ep resen ta t ion .  It a l so  a p p e a r s  

tha t  the  l a rge r  the  ra t io  r = 1/h one  uses ,  wi th in  the  s c h e m e ' s  s tab i l i ty  r ange ,  the  s m a l l e r  the  

p h a s e  error .  

No te ,  the  ana ly t i c  and  n u m e r i c a l  phase s  g iven  in Table  3 c o r r e s p o n d  on ly  to those  g i v e n  b y  

the  e q u a t i o n s  wi th  p o s i t i v e  s ign  (see  (4 .23)  and  (4.27)) .  T h e  o the r  resul t s  o f  the  a na ly t i c a l  and  

n u m e r i c a l  p h a s e s  w h i c h  c o r r e s p o n d  to the  nega t ive  s ign  can  be  f o u n d  s i m p l y  b y  m u l t i p l y i n g  

the  v a l u e s  g i v e n  in Tab le  3 by  ( - 1 ) .  
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All the calculations were performed on a Sun SPARC station 10 using Fortran with double 
precision arithmetic and the plots in all figures were obtained using the graphical system 
Unimap 2000. 

In the numerical calculations that follow, various cases involving line and ring solitons for 
the solution of (2.1) are reported; the parameters a and/3 were given the values a = -0 .01  
and/3 = 0.05 and the extrapolation method was used. In all the following experiments, the 
boundary conditions are taken to be 

Ou Ou 
- - = 0  and - - = 0  (6.7) 
Ox Oy 

6.1. ENERGY CONSERVATION 

The existence of conservation laws has been shown to be a characteristic property of soliton- 
producing equations. Thus, the conserved quantities may be used to provide a check on 
numerical integrations. It is desired therefore, to establish such a quantity which is conserved 
with respect to time t for the Sine-Gordon equation. Multiplying equation (2.1) by ut and 
integrating over the x-y region yields 

f f[ututt +/3u 2 - ut(uxx + uy u) + Fut sin u]dxdy = 0. (6.8) 

By integrating by parts and then using the boundary conditions (6.7), equation (6.8) can be 
reduced to 

0 2 - cos u)]dxdy '[=-f l f f (u t )2dxdy.   {½ff[ue + uu + +2(1 I J J  
(6.9) 

For/3 = 0, the energy for the undamped Sine-Gordon equation given by 

E = ~l f f + u u2+uzt+2(1-cosu)]dxdy, (6.10) 

is conserved, while for/3 > 0, the energy is not conserved; this term indicates the energy 
dissipated from the wave system. 

6.2. LINE SOLITONS 

6.2.1. Superposition of two line solitons 

The superposition of two line solitons is obtained for F(x, y) = 1 and initial conditions 

f(x,y) = 4 t a n - l e x p ( x ) + 4 t a n - l e x p ( y ) ,  -6<~x,y<~6, (6.11) 

g(x,y) = 0, - 6  ~< x , y  ~< 6 (6.12) 

and are presented in Fig. 1 for/3 = 0.05. The numerical solutions at times t = l, 2, 3 and 4 
are also shown. The results in Fig. 1 show the break up of two orthogonal line solitons which 
move away from each other undisturbed. For a small value of/3, the dissipative term is found 
to have little effect on the superposition of two line solitons, although at time t = 4, its effect 
started to become visible as the moving of the break up of two orthogonal line solitons has 
slowed down in comparison with the undamped case. For a large value of/3, however, the 
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dissipative term is found to slow down the separation and break up of two orthogonal line 
solitons as time increases. The CPU time required to reach t = 4 was 8.96 seconds using the 
space-time extrapolation method. 

A numerical check of the conservation of energy in the case of the undamped/damped 
Sine-Gordon equation is given. The resulting energy is shown in Figure 2(a) for 0 < t ~< 4. 
It can be seen from this figure that for/3 = 0 (undamped Sine-Gordon equation), the energy 
remains constant as time increases, while for/3 --- 0.05, the energy is found to be decreasing 
as time increases (see Figure 2(b)); this is due to the dissipative term. 

The initial energy (t = 0) is obtained over the region fl by insertion of the initial conditions 
(6.11) and (6.12) into equation (6.10) and is given by 

fb[exp(a) - exp(-a)] a[exp(b).-- exp(-b)]'~ 
Exnitial = 8 \ exp(a) + e x p ( - a )  + exp(b) + exp( -b)  / 

( 1 , ) 
+8  I + exp ( -2a )  1 +exp(2a )  

( 1 1 ) 
x I + exp(2b) 1 + exp(-2b)  + b 

+8  1 + exp(-2b)  1 + exp(2b) 

( 1 , ) 
x 1 + exp(2a) 1 + exp( -2a )  + a 

+4[sin 2 tan-  1 (exp a) - sin 2 tan-  1 (exp( -a ) ) ]  

× [sin 2 tan -1 (exp b) - sin 2 tan -1 (exp(-b))].  

The energies given in Fig. 2 are obtained as a linear combination of the three energies given 
on the grids G1, Ge and G3 using the composite trapezoidal role for integration, that is, 

2 E ~--- 4EG1 -[- - ~ E G a  - -  EG3, where Eal, Eaz and Ea3 are the energies obtained on the grids 
G1, Ga and G3 respectively. 
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6.2.2. Perturbation of a line soliton 

Perturbation of a single soliton has been depicted in Fig. 3 for/3 = 0.05 in terms of sin(u/2) 
at t = 2, 3, 5, 7 and 11. These results are for the case F(x,  y) = 1 and initial conditions 

f ( x ,  y) = 4tan -1 exp(x -t- 1 - 2sech(y + 7) - 2sech(y - 7)), 

- 7  ~< x, y ~< 7, (6.13) 

g(x,y)  = 0 - 7 ~ < x , y ~ < 7 .  (6.14) 

The results show two symmetric dents moving towards each other, interacting at time t = 7 
and after interaction the dents are seen to retain their shape after the collision. As before, a 
small dissipative term is found to have little effect on the symmetric perturbation of static line 
solitons but a large dissipative term/3 is found to slow down the formation of the dents. 

6.2.3. Line soliton in an inhomogeneous medium 

Numerical solutions for a line soliton in an inhomogeneous medium are obtained for the 
Josephson current density F(x ,  y) = 1 + sech2 v/-~ + y2 and the initial conditions 

f ( x , y )  = 4tan -1 exp ( ( x -  3.5)/0.954)) ,  - 7  ~< x , y  <<. 7 

9(x,y)  = 0.629sech ((x - 3.5)/0.954)) ,  - 7  ~< x , y  <<. 7 

(6.15) 

(6.16) 

and are presented in Fig. 4 for/3 = 0.05 in terms of sin(u/2) at t = 6, 12 and 18 in the region 
- 7  <~ x, y ~< 7. The results in Fig. 4 show that the line soliton is moving almost as a straight 
line during the transmission through inhomogeneity. For a large value of/3, transmission of 
the line soliton across inhomogeneity was found to hardly move the soliton from its initial 
position (t = 0), the dissipative term is slowing down the evolution of the line soliton as time 
increases. 

6.3. RING SOLITONS 

6.3.1. Circular ring soliton 

Circular ring solitons are found for the case F(x,  y) = 1 and initial conditions 

/ . . . . _  

f ( x , y )  = 4tan - l e x p ( 3 -  ~ x  2 + y 2 ) , _ 7  ~ x , y  ~< 7 

g(x,y)  = 0 - 7  <~ z,y<~ 7. 

(6.17) 

(6.18) 

The solutions were sought over the domain - 7  ~< z, y ~< 7 and are presented in Fig. 5 for 
/3 = 0.05 at t = 2.8, 5.6, 8.4, and 11.2 in terms of sin(u/2).  At the initial stage (t = 0), it 
can be seen that the ring soliton shrinks and as time goes on, oscillations and radiations begin 
to form and continue to form up to t -- 8.4. At t ---- 11.2, the graph shows that a ring soliton 
is nearly formed again (in the case of the damping switched off, the ring soliton was found 
to be already formed). For a large value of/3, the initial shrunk ring soliton was found to be 
changing very slowly from its initial position as time increases. 
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6.3.2. Collision of two circular ring solitons 

The collision between two circular solitons is considered for F(x,  y) = 1 and initial conditions 

f ( x , y )  = 4 t a n - l e x p ( ( 4  - ~ ( x + 3 )  2 + ( y + 7 ) 2 / 0 . 4 3 6 ) ,  

- l O ~ < x ~ <  10, - 7 ~ < y ~ < 7  (6.19) 

= 4.13sech / ~(4 - ~/(x + 3) 2 + (y + 7 ) 2 / 0 . 4 3 6 ) ,  \ 9(x,Y) 

-lO~<x~< 10, -7~<y~<7 (6.20) 

over the region - 10 <~ x <~ 10, - 7  <~ y ~< 7 and are presented in Fig. 6 for/3 = 0.05 at t = 4, 
8 and 11 in terms of  s in(u/2) .  The solution is extended across x = - 1 0  and y = - 7  by 
symmetry relations. The results in Fig. 6 show the collision between two expanding circular 
ring solitons in which, as a result of  the collision, two oval-ring solitons bounding an annular 
region emerge into a larger oval ring soliton. For a large value of /3 ,  it is found that the 
dissipative term is slowing down the two initial ring solitons to emerge into a larger oval ring 
soliton. For example, wi th/3  = 5 the two ring solitons at time t = 11 still look like those 
given at t = 1.5 for/3 = 0.05. 
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6.3.3. Collision of four circular ring solitons 

Finally, a collision of four expanding circular ring solitons is investigated for F(x,  y) = 1 
and initial conditions 

4tan -1 exp ( (4  - ~/(x + 3) 2 + (y + 3)2/0.436) , f(x,v) 
- 3 0  ~< x , y  ~< 10 (6.21) 

9(x,Y) = 4.13cosh ( ( 4 -  ~/(x + 3) 2 + (y+ 3)2/0 .436) ,  

- 30~<x ,y~<  10 (6.22) 

over the domain - 3 0  ~< x, y ~< 10. The solution was found over one-quarter of the domain 
and then it was extended across x = - 1 0  and y = - 1 0  by symmetry relations. The results 
are depicted in Fig. 7 for/3 = 0.05 at t = 2, 4, 6 and 7 in terms of sin(u/2), from which 
observations similar to those related to the collision of two expanding circular ring solitons 
may be made. 
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7. Concluding Remarks 

A numerical method arising from a two-step, one-parameter method has been developed for 
the numerical solution of a damped Sine-Gordon equation. 

Numerical experiments for various cases involving line and ring solitons are reported. For 
a small value of/3, it was found that the effect of the dissipative term in the solutions of 
the Sine-Gordon equation is small in comparison with the undamped Sine-Gordon equation, 
whereas for a large value of 3, the dissipative term was found to slow down the evolution of 
the line and ring solitons from their initial position as time increases. 

For/3 = 0.05, results like 47r-break up into 27r kinks, which move away from each other 
undisturbed were found for the superposition of line solitons. Two symmetric dents are found 
to move towards each other and to retain their shape after the collision for the perturbed single 
line soliton. For the line soliton in an inhomogeneous medium, it was found that the line is 
transmitted across the inhomogeneity almost as a straight line soliton. 

Shrinking phase initially, oscillating behaviour, and a forming of a ring soliton again are 
observed for the circular ring soliton. Finally, for the collision between two circular ring 
solitons, expanding ring solitons and emergence into a larger oval ring-soliton are observed. 
Similar observations can be made also for the collision of four circular ring solitons. 

Finally, it was seen that, for the case where the exact solution is known, the global 
extrapolation involving both space and time produced noticeable reductions in error. These 
results supported the confidence in applying this method to problem (2.1) in which the 
theoretical solution is not known. 

Solutions to the Sine-Gordon equation were found to exhibit little numerical dispersion 
for values of the space and time steps within the scheme's stability range. 

The authors are very grateful to the referees for their valuable comments and suggestions, 
which have improved the paper. 
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